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Abstract—We consider the problem of direction of arrival
(DOA) estimation using a recently proposed structure of nonuni-
form linear arrays, referred to as co-prime arrays. By exploiting
the second order statistical information of the received signals,
co-prime arrays exhibit degrees of freedom with only

sensors. A sparsity-based recovery algorithm is pro-
posed to fully utilize these degrees of freedom. The suggested
method is based on the developing theory of super resolution,
which considers a continuous range of possible sources instead of
discretizing this range onto a grid. With this approach, off-grid
effects inherent in traditional sparse recovery can be neglected,
thus improving the accuracy of DOA estimation. We show that
in the noiseless case it is theoretically possible to detect up to

sources with only sensors. The noise statistics of
co-prime arrays are also analyzed to demonstrate the robustness
of the proposed optimization scheme. A source number detection
method is presented based on the spectrum reconstructed from
the sparse method. By extensive numerical examples, we show the
superiority of the suggested algorithm in terms of DOA estimation
accuracy, degrees of freedom, and resolution ability over previous
techniques, such as MUSIC with spatial smoothing and discrete
sparse recovery.

Index Terms—Co-prime arrays, continuous sparse recovery,
direction of arrival estimation, source number detection, super
resolution.

I. INTRODUCTION

I N the last few decades, research on direction of arrival
(DOA) estimation using array processing has focused

primarily on uniform linear arrays (ULA) [1]. It is well known
that using a ULA with sensors, the number of sources that
can be resolved by MUSIC-like algorithms is [2].
New geometries [3], [4] of non-uniform linear arrays have
been recently proposed to increase the degrees of freedom of
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the array by exploiting the covariance matrix of the received
signals. Vectorizing the covariance matrix, the system model
can be viewed as a virtual array with a wider aperture. In [3],
a nested array structure was proposed to increase the degrees
of freedom from to , with only sensors.
However, some of the sensors in this structure are closely
located, which leads to mutual coupling among these sensors.
To overcome this shortcoming, co-prime arrays were proposed
in [4]. Such arrays consist of two subarrays with and
sensors respectively. It was shown that by using
number of sensors, this structure can achieve degrees
of freedom. In this paper we focus on co-prime arrays.
The increased degrees of freedom provided by the co-prime

structure can be utilized to improve DOA estimation. To this
end, two main methodologies have been proposed to utilize this
increased degrees of freedom for co-prime arrays. The first are
subspace methods, such as the MUSIC algorithm. In [5], a spa-
tial smoothing technique was implemented prior to the appli-
cation of MUSIC, and the authors showed that an increased
number of sources can be detected. However, the application
of spatial smoothing reduces the obtained virtual array aperture
[6]. The second approach uses sparsity-based recovery to over-
come these disadvantages of subspace methods [6]–[9]. Tradi-
tional sparsity techniques discretize the range of interest onto a
grid. Off-grid targets can lead to mismatches in the model and
deteriorate the performance significantly [10]. In [11], [12] the
grid mismatches are estimated simultaneously with the original
signal, leading to improved performance over traditional sparse
recovery methods. In [13], the joint sparsity between the orig-
inal signal and the mismatch is exploited during DOA estima-
tion. Due to the first-order approximation used in [13], the es-
timation performance is still limited by higher-order modeling
mismatches.
To overcome grid mismatch of traditional sparsity-based

methods, in this paper we apply the recently developed
mathematical theory of continuous sparse recovery for super
resolution [14]–[16] to DOA estimation with co-prime arrays.
The term “super resolution” in this paper is related to the
off-grid problem and is different from the traditional definition
commonly used in DOA estimation. In [14], [15] it was shown
that assuming a signal consists of spikes, the high frequency
content of the signal’s spectrum can be perfectly recovered in
a robust fashion by sampling only the low end of its spectrum,
when the minimum distance between spikes satisfies certain
requirements. In [16], the author provides performance guar-
antees on the recovered support set of the sparse signal. One
merit of this theory is that it considers all possible locations
within the desired range, and thus does not suffer from model
mismatches.
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Here we extend the mathematical theory of super resolution
to DOA estimation with co-prime arrays under Gaussian noise.
The effective noise resulting from the usage of co-prime arrays
consists of a term with a known structure and another term con-
taining quadratic combinations of Gaussian noise. Therefore,
wemodify the reconstructionmethod to fit these particular noise
properties and prove the robustness of our approach by ana-
lyzing the noise statistics. We also prove that with sen-
sors in a co-prime array, it is possible to detect up to
sources robustly. Previous identifiability research using tradi-
tional compressed seining for co-prime arrays [9] was based on
the idea of mutual coherence [17]. Using mutual coherence it
can be shown that co-prime arrays increase the number of de-
tected sources from to , but this analysis is
valid only for very small values of the number of sources.
Source number detection is another main application of array

processing. Various methods have been proposed over the years
based on the eigenvalues of the signal space, such as the Akaike
information criterion [18], second-order statistic of eigenvalues
(SORTE) [19], and the predicted eigen-threshold approach [20].
The authors of [21] showed that among these methods, SORTE
often leads to better detection performance. Here we combine
the SORTE approach with the spectrum reconstructed from the
proposed DOA estimation algorithm to determine the number
of sources. Through this source number detection, we identify
which reconstructed spikes are true detections and which are
false alarms.
The paper is organized as follows. In Section II, we introduce

the DOA estimation model and explain how co-prime arrays
can increase the degrees of freedom. In Section III, we adapt
the theory of super resolution to co-prime arrays, and analyze
the robustness of this extension by studying the statistics of the
noise pattern in the model. We propose a numerical method to
perform DOA estimation for co-prime arrays in Section IV. We
then extend this approach to detect the number of sources in
Section V. Section VI presents extensive numerical simulations
demonstrating the advantages of our method in terms of estima-
tion accuracy, degrees of freedom, and resolution ability.
Throughout the paper, we use capital italic bold letters to

represent matrices and operators, and lowercase italic bold let-
ters to represent vectors. For a given matrix , denotes the
conjugate transpose matrix, denotes the transpose, rep-
resents the conjugate matrix without transpose, and de-
notes the th element of . We use to denote the Kro-
necker product of two matrices. For a given operator , de-
notes the conjugate operator of . Given a vector , we use

and for the and norms; and are both
used to represent the th element of . Given a function ,

are its norms.

II. DIRECTION OF ARRIVAL ESTIMATION AND

CO-PRIME ARRAYS

Consider a linear sensor array with sensors which may
be non-uniformly located. Assume that there are narrow
band sources located at with signal powers

. The steering vector for the th source located
at is with th element ,
in which is the location of the th sensor and is the

wavelength. The data collected by all sensors at time can be
expressed as

(1)

for , where
is an i.i.d. white Gaussian noise ,

, and
represents the source

signal vector with distributed as . We assume
that the sources are temporally uncorrelated.
The correlation matrix of the data can be expressed as

(2)

in which is a diagonal matrix with diagonal elements
. After vectorizing the correlation matrix ,

we have

(3)

where

(4)

, and with
denoting a vector with all zero elements, except for the th ele-
ment, which equals one.
Comparing (1) with (3), we see that behaves like a coherent

source and becomes a deterministic noise term. The dis-
tinct rows in act as a larger virtual array with sensors located
at , with . Traditional DOA estimation al-
gorithms can be implemented to detect more sources when the
structure of the sensor array is properly designed. Following this
idea, nested arrays [3] and co-prime arrays [4] were introduced,
and then shown to increase the degrees of freedom from
to , and from to respectively. In the
following, we focus only on co-prime arrays; the results follow
naturally for nested arrays.
Consider a co-prime array structure consisting of two arrays

with and sensors respectively. The locations of the
sensors are in the set , and the locations
of the sensors are in the set as
illustrated in Fig. 1. The first sensors of these two arrays are
collocated. The geometry of such a co-prime array is shown in
Fig. 1. The locations of the virtual sensors in from (3) are
given by the cross difference set

and the two self difference sets.
In order to implement spatial smoothing of MUSIC, or to use
other popular DOA estimation techniques, we are interested in
generating a consecutive range of virtual sensors. It was shown
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Fig. 1. Geometry of co-prime arrays.

in [5] that when and are co-prime numbers, a consecutive
range can be created from to , with

taken from the cross difference set and taken from any one
of the self difference sets.
By removing repeated rows of (3) and sorting the remaining

rows from to , we have the linear model rear-
ranged as

(5)

It is easy to verify that is a vector whose
elements all equal zero, except the th element, which
equals one. The matrix is given by

...
. . .

...

which is the steering matrix of a ULA with sen-
sors. Therefore, (5) can be regarded as a ULA detecting a co-
herent source with deterministic noise term . By applying
MUSIC with spatial smoothing, the authors in [5] showed that

sources can be detected, using this approach.

III. DIRECTION OF ARRIVAL ESTIMATION WITH SUPER
RESOLUTION RECOVERY

In this section we first assume that the signal model (3) is
accurate, which means that the number of samples is infi-
nite, and also that the noise power is known a priori. The
super resolution theory developed in [14] can then be applied to
co-prime arrays to demonstrate that we can detect up to
sources robustly as long as the distance between any two sources
is on the order of . We then consider the case in which the
number of time samples is limited and demonstrate the ro-
bustness of super resolution recovery via statistical analysis of
the noise structure.

A. Mathematical Theory of Super Resolution

Super resolution seeks to recover high frequency details from
the measurement of low frequency components. Mathemati-

cally, given a measure with , the Fourier series
coefficients are recorded as

(6)

Using the operator to denote the low frequency measuring
operator which transforms a signal from its continuous time do-
main into its discrete frequency domain, we can represent (6) as

, in which and
.

Suppose that the measure is sparse, i.e., is a
weighted sum of several spikes:

(7)

in which can be complex valued and for all .
Then

(8)

In order to recover from the measurements , total
variation minimization is introduced. This criterion encourages
the sparsity in the measure , just as norm minimization
produces sparse signals in the discrete space. In the rest of the
paper, we will use to denote the measure for simplicity.
The total variation for the complex measure is defined as

(9)

the supremum being taken over all partitions of the set
into countable collections of disjoint measurable sets . When
has the form (7), , which resembles the

discrete norm.
The following convex optimization formula was proposed

in [14] to solve the super resolution problem which recovers a
sparse measure from :

(10)

When the distance between any two and is larger than ,
then the original sparse signal is the unique solution to the
above convex optimization [14]. The continuous optimization
(10) can be solved via the dual problem [14]:

,
,

(11)

where is a Hermitian matrix and
is the Lagrangian multiplier for the constraint

. The primal solution is obtained through a combined
process of rooting finding and least-squares [14].
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B. DOA Estimation With TV-Norm Minimization

DOA estimation with co-prime arrays can be related to (8)
by a straightforward change of variables. Letting

for all , the linear model of (5) can be transformed
into

(12)

where , and is a
sparse measure given in (7) with . Note that the measure
is different from the vector representation ,
and they are related by (7). The change of variables is performed
to guarantee that . We use to
denote the support set.
A theorem about the resolution and degrees of freedom for

co-prime arrays can be directly derived using Theorem 1.2 in
[14]. Before introducing the theorem, we first define the min-
imum distance between any two sources as

(13)

Theorem III.1: Consider a co-prime array consisting of
two linear arrays with and sensors respectively. The
distances between two consecutive sensors are for the
first array and for the second array, where and are
co-prime numbers, and . Suppose we have sources
located at . If the minimum distance follows the
constraint that

then by solving the convex optimization (10) with the signal
model , one can recover the locations for

exactly. The number of sources that can be detected
is

With a co-prime array using sensors, the contin-
uous sparse recovery method can detect up to sources
when . The minimum distance constraint is a suf-
ficient condition. In real applications we can expect a more re-
laxed distance condition for the sources. We will confirm this
point in the numerical results. With the utilization of co-prime
arrays, the same number of sensors can detect sources
as indicated by traditional MUSIC theory [5]. We will show in
the numerical examples that implementing the super resolution
framework provides more degrees of freedom and finer reso-
lution ability than those of MUSIC. This is because the spatial
smoothing in MUSIC reduces the obtained virtual array aper-
ture. For the noiseless case, other methods, such as Prony’s
method [22] and matrix pencil [23] can be used for exact re-
covery of sources. However, they require prior infor-
mation about the system order, which we do not require here.
Furthermore, these methods are generally sensitive to noise in
the model and therefore do not offer robustness guarantees.

C. Noisy Model for Sparse Recovery

In practice, the covariance matrix in (2) is typically un-
known, and cannot be estimated exactly unless the number of
samples goes to infinity. Typically the covariance matrix is
approximated by the sample covariance:

(14)

Subtracting the noise covariance matrix from both sides, we
obtain

(15)

Here is a diagonal matrix with -th diagonal element

(16)

and the th element of is given by (see (1))

(17)

For simplicity of analysis, we assume that and
.

Similar to the operation in (3), vectorizing (15) leads to

(18)

where and . For co-prime ar-
rays, by removing repeated rows in (18), and sorting them as
consecutive lags from to , we get

(19)

in which , and are defined in (5). The vector is obtained
after rearranging , and only one element from corresponds
to the diagonal element from . Applying the transformation
technique in (12), we have

(20)

where , and is the measure defined in (7)
with . Thus we can formulate the following continuous
sparse recovery problem, which considers the noise:

(21)

This optimization can be solved by first solving the dual
problem [15]:

,
.
(22)
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As before, the primal solution is obtained through a combined
process of root finding and least-squares [15].
In order to analyze the robustness of the proposed approach

for co-prime arrays, we introduce a lemma that shows that the
probability of every element in being larger than a constant is
upper bounded. The proof can be found in the appendix.
Lemma III.1: Let be given in (17) and assume that

and . Then for , we have

When , and , we obtain

Here and are increasing functions of
.
The work of [16] provides an error bound on the support

set estimation using (21) with noisy measurements. Combining
the result from [16] with Lemma III.1, we have the following
theorem.
Theorem III.2: Consider a co-prime array consisting of

two linear arrays with and sensors respectively. The
distances between two consecutive sensors are for the
first array and for the second array, where and are
co-prime numbers, and . Assume sample points are
collected for each receiver. Suppose we have sources lo-
cated at . The minimum distance Let

with and .
Consider applying the transformation in (12) and solving the
optimization (21) with , and denote
as the optimal solution, so that

(23)

Then, for every

(24)

(25)

and

(26)

with probability at least , where is an in-
creasing function of . Here and are positive con-
stants, , and is the support
set of the original measure .

Proof: Since , we have that for all after
transformation (12). It was shown in [16] that in order to obtain
(24)–(26) we only need to show that with a certain
probability in (21). Thus the statistical behavior of in (20) is
analyzed first.

Note that

(27)

which leads to the inequality

(28)

The equality follows from the fact that ac-
cording to (19) and (20). Recall that elements of are
taken from when , and one element of is taken
from when . Therefore, by applying the results of
Lemma III.1, we can show that with
probability at least and is a increasing func-
tion of .
Equations (24) and (25) show that the estimated support set

clusters tightly around the true support, while (26) indicates that
the false peaks in the estimated set have small amplitudes.
A numerical method is proposed in the next section to further
refine the estimation, using a discrete sparse recovery method
after obtaining .
When both DOAs and signal powers are of interest, we com-

bine the statistical analysis of the noise structure in co-prime
arrays with the super resolution results in [15] to give a perfor-
mance guarantee on the reconstruction of the sparse measure .
Since is a sparse measure, there is no point in bounding
directly. Instead , which is a low pass filter with cut-off fre-
quency , is introduced. This kernel is referred to as
the Fejér kernel, and is given by

(29)

The cut-off frequency can bemuch higher than . Thus
using , we can show that by solving the convex optimiza-
tion problem in (21) the high resolution details of the original
measure can be recovered with high prob-
ability, even though the sample size is finite.
Theorem III.3: Let the co-prime arrays and the locations of

the sources have the same setup as in Theorem III.2. The solu-
tion of the convex optimization (21) satisfies

(30)

with probability at least when
, where is a increasing

function of . Here is a positive constant number.
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The proof can be obtained by combining Lemma III.1 with
the techniques in [15]. Theorem III.3 allows to choose the
cut-off frequency as large as one wants in order to bound
the reconstruction error up to a certain resolution. However,
this will entail an increase in the reconstruction error which is
proportional to . This theorem also shows that the reconstruc-
tion of is stable in the presence of noise. The probability of
successful reconstruction goes to one exponentially fast as the
number of samples goes to . When fixing the probability
of a stable reconstruction, by increasing the number of samples
we can allow for a decreased since is an increasing

function. Therefore we can have a larger without increasing
the error bound in (30). By collecting more samples, one can
stably reconstruct the measure as if we had an even wider
aperture .

IV. DOA ESTIMATION VIA SEMIDEFINITE
PROGRAMMING AND ROOT FINDING

We now derive an optimization framework to reconstruct
for co-prime arrays. Since the optimization is performed on a
continuous domain, we will refer to the proposed algorithm as
the continuous sparse recovery in the rest of this paper.
For DOA estimation the noise power is often unknown.

Therefore, the optimization must be modified to include this
effect. A more realistic optimization is reformulated as

(31)

in which , and is defined in (5). The dual
problem takes on the form

(32)

The derivation of (32) is given in the Appendix. Since is
a feasible solution, strong duality holds according to the general
Slater condition [24].
Due to the first constraint in (32), the problem itself is still an

infinite dimensional optimization. It was shown in [14] that the
first constraint can be recast as a semidefinite matrix constraint.
Thus the infinite dimensional dual problem is equivalent to the
following semidefinite program (SDP):

,
.
(33)

Here is a Hermitian matrix. This
optimization problem can be easily solved, for example by using
the CVX package [24], to yield the optimal dual solution.
The following lemma is introduced to link the solutions of

the primal and dual problems.

Lemma IV.1: Let and be the optimal
solutions of the primal problem (31) and dual problem (33) re-
spectively. Then

(34)

for all such that Here is the adjoint operator
of , and it transforms a vector into a continuous signal by
taking the inverse Fourier transform.

Proof: Let be the noise power estimated in the primal
problem. Since strong duality holds, we have

(35)

The first inequality follows from the Cauchy-Schwarz in-
equality and the fact that . The
second inequality results from . In addition, we
also have

(36)
where we used the fact that . Combining (35)
and (36) leads to , which implies
(34).
According to Lemma IV.1, the supports of satisfy

(34), and thus can be retrieved by root-finding based on the
trigonometric polynomial . Let denote
the recovered set of roots of this polynomial with cardinality

, and let denote elements in with
A matrix can then be formulated, with
measurement expressed as

(37)

in which and

...
. . .

...

Due to numerical issues in the root finding process, the car-
dinality of is normally larger than the cardinality of , i.e.,

. It is possible in some cases that ,
which would lead to an ill-conditioned linear system (37). Spar-
sity can then be exploited on . A convex optimization in the
discrete domain can be formulated as

(38)

We choose in (38) to be larger than in (31) since the noise
level is expected to be higher in (37) due to inevitable error in-
troduced in the root finding process. Assuming that the solution
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of (38) is , the estimation of the measure in
the continuous domain can be represented as

(39)

V. EXTENSION: SOURCE NUMBER DETECTION

Conventional source number detection for array processing is
typically performed by exploiting eigenvalues from the sample
covariance matrix. For co-prime arrays, this covariance matrix
can be obtained by performing spatial smoothing on in (5).
The same idea can also be implemented on the sparse signal

recovered from the previous section. Ideally, after sorting
its elements in a descending order, the signal reconstructed
from (38) should follow

(40)

The SORTE algorithm can be applied to this series. The dif-
ference of the elements from is

(41)

The gap measure in SORTE is given as

,
,

(42)

where

(43)

The number of sources can be estimated as

(44)

This approach requires due to the definition of
in (42). When , since is obtained

from the rooting finding process based on the continuous
sparse recovery, we simply let . We will refer to this
continuous sparse recovery based SORTE as CSORTE.

VI. NUMERICAL RESULTS

In this section, we present several numerical examples to
show the merits of implementing our continuous sparse re-
covery techniques to co-prime arrays.
We consider a co-prime array with 10 sensors. One set of sen-

sors is located at positions , and the second set
is located at , where is taken as half of
the wavelength. The first sensors from both sets are collocated.
It is easy to show that the correlation matrix generates a vir-
tual array with lags from to . We compare continuous
sparse recovery (CSR) techniques with MUSIC and also with
discrete sparse recovery method (DSR) considering grid mis-
matches [13]. In [13], a LASSO formulation is used to perform
the DOA estimation. Here we implement an equivalent form
of LASSO, i.e., Basis Pursuit, to perform the comparison. The

Fig. 2. Normalized spectra for CSR, MUSIC, and DSR, with and
.

MUSICmethod in this simulation follows the spatial smoothing
technique in [5]. For the discrete sparse recovery method, we
take the grid from to 1, with step size 0.005 for . The
noise levels in the optimization formulas are chosen by cross
validation. We consider 15 narrow band signals located at

We show that continuous sparse recovery yields better results in
terms of detection ability, resolution, and estimation accuracy.

A. Degrees of Freedom

In this first numerical example, we verify that the proposed
continuous sparse recovery increases the degrees of freedom to

by implementing the co-prime arrays’ structure. The
number of time samples is 500 and the SNR is chosen to be

. The for CSR is taken as 5, and is taken as 10 while
DSR uses . In Fig. 2, we use a dashed line to represent
the true directions of arrival. The CPU time for running CSR
was 7.30 seconds. DSR took 7.82 seconds, whereas MUSIC al-
gorithm took only 0.81 seconds. In MUSIC, we implement a
root MUSIC algorithm to estimate the location of each source,
where the number of sources is assumed to be given. The av-
erage estimation errors for CSR, DSR, and root MUSIC are
0.23%, 0.26%, and 0.42% respectively. We can see that all three
methods achieve . In the following subsection, we test
the estimation accuracy of these three methods via Monte Carlo
simulations.

B. Estimation Accuracy

In this section, we compare CSR, DSR andMUSIC viaMonte
Carlo simulations. Since traditional MUSIC does not yield the
DOA of each source directly, we consider the Root MUSIC al-
gorithm instead. For simplicity, we will still refer to it asMUSIC
in this section. The number of sources is assumed to be known
for the MUSIC algorithm in this simulation, whereas sparse
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Fig. 3. DOA estimation errors for CSR, MUSIC, and DSR, with .

methods do not assume this a priori. The values of and are
chosen to be 5 and 10, while discrete SR uses .
Fig. 3 shows the DOA estimation error as a function of SNR

after 50 Monte Carlo simulations. The estimation error is calcu-
lated based on the sine function of the DOAs. The average CPU
times for running CSR, DSR and MUSIC are 6.93 s, 9.30 s, and
1.46 s respectively. We can see that CSR performs better than
DSR uniformly with less computing time. Both sparse recovery
methods achieve better DOA estimation accuracy than MUSIC.
The accuracy of DSR can be further improved by taking a finer
grid with a smaller step-size. However, this will slow downDSR
further.
In Fig. 4 we show that with a varying number of snapshots the

proposed CSR also exhibits better estimation accuracy than ei-
ther DSR or MUSIC. The average CPU times for running CSR,
DSR andMUSIC are 6.50 s, 7.91 s, and 1.43 s respectively. The
performance of MUSIC and DSR approaches the performance
of CSR when the number of snapshots is close to 5000. We can
see that implementing CSR can save sampling time by taking a
small number of snapshots to achieve the same estimation ac-
curacy as the MUSIC algorithm. The parameters and are
equal to 5 and 10 in this simulation.

C. Source Number Detection Performance Comparison

We now compare the source number detection performance
of the proposed CSORTE with that of traditional SORTE ap-
plied to the covariance matrix after spatial smoothing. The SNR
is set to 0 dB while the number of snapshots is 3000. We vary
the number of sources from 11 to 17. Since this co-prime array
structure yields consecutive lags from to , 17 is the
maximum number of sources that can be detected theoretically
via techniques based on the covariance matrix.
Fig. 7 shows the probability of detection with respect to the

number of sources after 50 Monte Carlo simulations. In CSR,
is chosen to be , and is set to be . When the number of
sources is less than 15, CSORTE and SORTE yield comparable
result. However, SORTE fails after the number of sources is
larger than 15, while CSORTE provides stable performance and
also exhibits perfect detection even when the number of sources
reaches the theoretical limit of 17. DSR can also be combined

Fig. 4. DOA estimation error for CSR, MUSIC, and DSR, with
.

Fig. 5. Source number detection using CSORTE and SORTE, with
, .

with SORTE to perform source number detection. However, the
detection accuracy is jeopardized by the spurious signal from
the reconstructed signals using DSR. Therefore SORTE based
on DSR is not included here.

D. Resolution Ability

Finally we compare the resolution abilities of CSR and
MUSIC, and show that CSR is capable of resolving very
closely located signals. In the first simulation, two sources are
closely located at and . The value of is chosen
to be and is set to be in CSR, where is the noise
power.
Fig. 6 shows a numerical example in which the SNR is 0

dB and the number of snapshots is 500. Normalized spectra
are plotted for three methods. MUSIC method A is the MUSIC
algorithm with the assumption that the number of sources is
known while the MUSIC method B is MUSIC relying on tra-
ditional SORTE to provide the estimated number of sources.
We can see that MUSIC method B fails to resolve these two
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Fig. 6. Source number detection using CSR and the MUSIC algorithm, with
, .

Fig. 7. Source number detection using CSR and MUSIC algorithm, with
, .

targets because traditional SORTE fails to estimate the number
of sources correctly. CSR resolves the two sources successfully
even though a priori information about the number of sources is
not assumed to be given. In Fig. 7, we lower the SNR to ,
and we notice that even given the number of sources, MUSIC
fails to resolve the two closely located sources while CSR re-
solves them successfully.
Note, that while a separation of is sufficient for The-

orem III.1 to hold, in real applications, we expect to observe
a better result. Thus we intentionally chose two sources which
are more closely located, to show that the proposed method still
works even with a stronger constraint.
Finally we conduct a simulation based on Monte Carlo runs

to compare the resolution ability of CSORTE and the tradi-
tional SORTE algorithm. Fig. 8 shows the resolution perfor-
mance in detecting two sources located at and , using
CSORTE and SORTE after 50Monte Carlo runs. The parameter
is chosen to be , and is set to be in CSR. We can see
that CSORTE outperforms traditional SORTE when detecting
the two closely located sources.

Fig. 8. Comparison of resolution performance of CSORTE and SORTE, with
.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we extended the mathematical theory of super
resolution to DOA estimation using co-prime arrays. A primal-
dual approach was utilized to transform the original infinite
dimensional optimization problem to a solvable semidefinite
program. After estimating the candidate support sets by root
finding, a small scale sparse recovery problem is solved. The
robustness of the proposed super resolution approach was veri-
fied by performing statistical analysis of the noise inherent in
co-prime array processing. A source number detection algo-
rithm was then proposed by combining the existing SORTE
algorithm with the reconstructed spectrum from convex opti-
mization. Via numerical examples, we showed that the proposed
method achieves a more accurate DOA estimation while pro-
vidingmore degrees of freedom, and also exhibits improved res-
olution ability over traditional MUSIC with spatial smoothing.
Although implementing the continuous sparse recovery

method saves sampling time in obtaining a certain estimation
accuracy compared with MUSIC, one shortcoming of this
approach is that solving the semidefinite program is more time
consuming than MUSIC. Fast algorithm development could
be an interesting topic for future work. It is also of interest to
develop a systematic way to choose and in the optimization
formulas. One major assumption made in current research on
co-prime arrays research is that the sources are uncorrelated.
Incorporating correlations among sources is another important
topic for future work.

APPENDIX

To derive the statistical behavior of each element in in
Lemma III.1 we rely on two lemmas regarding the concentration
behavior of complex Gaussian random variables. Their proofs
are based on results from [25].
Lemma A.1: Let and be sequences of

i.i.d., circularly-symmetric complex normal variables with zero
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mean and variances equal to and respectively. That is
and . Then

Proof: First we have

Following the same procedure used in the proof of Lemma III.1,
we have

Applying Lemma 6 from [25] concludes the proof.
Before introducing the next lemma, we need to show that

the square sums of i.i.d Gaussian random variables concentrate
around the sum of their variances. The results below rely on
Lemma 7 from [25].
Lemma A.2: Let be a sequence of i.i.d.

Gaussian random variables with zero mean and variance equal
to , i.e., . Then

for .
Proof: From the results in [25], for any positive , we have

the asymmetric bounds

When , we obtain

Combing the above two inequalities leads to

which yields the result by replacing with while main-
taining .
Lemma A.3: Let be a se-

quence of i.i.d., circularly-symmetric complex normal random
variable. When , we have

Proof: We begin by noting that

Therefore

Applying Lemma A.2, we establish the result.
Proof of Lemma III.1: We use , and to denote the

first three terms in (17). The last two terms are denoted by .
Then

which leads to the inequality

(45)
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We also have

(46)

The last inequality follows from the fact that for all
. Thus

Clearly

for some with . Using Lemma A.1

(47)

with
For the second term , we have

(48)

Following similar arguments as for , we obtain that

Applying Lemma A.1, we have

(49)

with
For the third term, we have the same results as the second

one, given as

(50)

When , the last term , and by
Lemma A.1,

(51)

with . When , the last term is given

as , thus the probability is bounded
by

(52)

where and according to Lemma A.3.
Applying the results from (47), (49), (50), (51) and (52) to in-
equality (45), we obtain the desired result.

A. Derivation of the Dual Problem in Section IV

By introducing the variable , the original primal
problem is equivalent to the following optimization:

With the Lagrangian multiplier and , the
Lagrangian function is given as

The dual function is given as

The Lagrangian multipliers and in the domain of the dual
function have to satisfy the following three constraints:

From the third constraint, we have , resulting in the
dual problem stated in (33).
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